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USING CROSS‐VALIDATION TO EVALUATE CERES‐MAIZE

YIELD SIMULATIONS WITHIN A DECISION SUPPORT

SYSTEM FOR PRECISION AGRICULTURE

K. R. Thorp, W. D. Batchelor, J. O. Paz, A. L. Kaleita, K. C. DeJonge

ABSTRACT. Crop growth models have recently been implemented to study precision agriculture questions within the framework
of a decision support system (DSS) that automates simulations across management zones. Model calibration in each zone has
occurred by automatically optimizing select model parameters to minimize error between measured and simulated yield over
multiple growing seasons. However, to date, there have been no efforts to evaluate model simulations within the DSS. In this
work, a model evaluation procedure based on leave‐one‐out cross‐validation was developed to explore several issues
associated with the implementation of CERES‐Maize within the DSS. Five growing seasons of measured yield data from a
central Iowa cornfield were available for cross‐validation. Two strategies were used to divide the study area into management
zones, one based on soil type and the other based on topography. The decision support system was then used to carry out the
model calibration and validation simulations as required to complete the cross‐validation procedure. Results demonstrated
that the model's ability to simulate corn yield improved as more growing seasons were used in the cross‐validation. For
management zones based on topography, the average root mean squared error of prediction (RMSEP) from cross‐validations
was 1460 kg ha-1 when two growing seasons were used and 998 kg ha-1 when five years were used. Model performance was
shown to vary spatially based on soil type and topography. Average RMSEP was 1651 kg ha-1 on zones of Nicollet loam, while
it was 496 kg ha-1 on zones of Canisteo silty clay loam. Spatial patterns also existed between areas of higher RMSEP and
areas where measured spatial yield variability was related to topography. Changes in the mean and variance of optimum
parameter sets as more growing seasons were used in cross‐validation demonstrated that the optimizer was able to arrive at
more stable solutions in some zones as compared to others. Results suggested that cross‐validation was an appropriate method
for addressing several issues associated with the use of crop growth models within a DSS for precision agriculture.
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he basic premises of precision agriculture are that
the characteristics and processes of agricultural
systems vary over space and time and that a better
understanding of this variation can lead to improve‐

ments in management of crop production inputs. In the past
decade, process‐oriented crop growth models are one of
many tools that have been implemented to understand the
spatial and temporal variability that occurs naturally within
agricultural  systems. Fundamentally, crop models have been
used to identify the factors that limit crop yield and cause ob‐
servable spatial yield variability (Batchelor et al., 2002).

Submitted for review in September 2005 as manuscript number BE
6097; approved for publication by the Biological Engineering Division of
ASABE in June 2007. Presented at the 2005 ASABE Annual Meeting as
Paper No. 053002.

The authors are Kelly R. Thorp, ASABE Member Engineer, Agricultural
Engineer, USDA‐ARS Arid‐Land Agricultural Research Center, Maricopa,
Arizona; William D. Batchelor, ASABE Member Engineer, Professor and
Head, Department of Agricultural and Biological Engineering, Mississippi State
University, Mississippi State, Mississippi; Joel O. Paz, ASABE Member
Engineer, Public Service Assistant, Department of Biological and Agricultural
Engineering, University of Georgia, Griffin, Georgia; Amy L. Kaleita, ASABE
Member Engineer, Assistant Professor, Department of Agricultural and
Biosystems Engineering, Iowa State University, Ames, Iowa; and Kendall C.
DeJonge, ASABE Member Engineer, Hydraulic Engineer, U.S. Army Corps
of Engineers, Omaha, Nebraska. Corresponding author: Kelly R. Thorp,
USDA‐ARS, 182 ALARC, 21881 N Cardon Lane, Maricopa, AZ 85238;
phone: 520‐316‐6375; fax: 520‐316‐6330; e‐mail: kthorp@uswcl.ars.ag. gov.

Specific yield‐limiting factors that have been studied using
crop models include water stress, nitrogen stress, soybean
(Glycine max (L.) Merr.) cyst nematode, and weeds (Paz et
al., 1998; Paz et al., 1999, Paz et al., 2001b, Paz et al., 2002).
With an understanding of the causes of spatial yield variabili‐
ty, crop modeling techniques can be extended to develop
variable‐rate  management strategies that optimize either
crop yield or producer economic returns spatially across the
field. Methodologies for precision management based on
crop model simulations have been developed for plant popu‐
lation and variety selection in soybeans (Paz et al., 2001a;
Paz et al., 2003) and for nitrogen fertilizer applications (Paz
et al., 1999) and irrigations (DeJonge et al., 2007a) in corn
(Zea mays L.). In the special case of precision nutrient man‐
agement, crop model simulations are also useful for under‐
standing the spatial and temporal roles of soil nutrients in
both crop production and environmental quality. Using the
results of spatial simulations for yield and nitrogen left be‐
hind over many seasons of historical weather, Thorp et al.
(2006) developed precision nitrogen management strategies
for reducing the environmental impacts of corn production.
Other applications of crop growth models in precision agri‐
culture include yield forecasting (Hodges et al., 1987; Liu et
al., 1989), yield gap analysis (Paz et al., 2004), and simula‐
tion of crop response to climate change or genetic modifica‐
tion (Boote et al., 1996).
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Recent work at Iowa State University has focused on the
use of the DSSAT crop growth models (Jones et al., 2003) to
answer precision agriculture questions at the sub‐field‐level
scale (Batchelor et al., 2002). Utilization of crop growth
models in this way has posed many interesting questions and
challenges in regards to the details of the implementation, the
feasibility of the approach, and the validity of the simulation
results. Fields must first be divided into subunits or manage‐
ment zones, each representing an independent region for im‐
plementation  of the one‐dimensional crop growth model.
However, it is unclear what criteria are appropriate for divid‐
ing the field into zones. Several different agricultural system
characteristics, including soil type (Franzen et al., 2002), to‐
pography attributes and soil electrical conductivity (Fraisse
et al., 2001b), and yield history (Hornung et al., 2006), have
been explored as the basis for management zone delineation.
A second challenge of applying crop growth models in preci‐
sion agriculture has been the need for an appropriate calibra‐
tion strategy for tuning the model to zone‐specific
conditions. To facilitate this goal for corn in Iowa, Garrison
et al. (1999) incorporated a tile drainage routine into the
CERES‐Maize crop growth model (Jones and Kiniry, 1986),
and Paz et al. (1999) described a calibration approach for ad‐
justing two water balance parameters, the saturated hydraulic
conductivity (KSAT) of the bottom soil layer and the effective
tile drainage rate, to estimate spatially the effects of soil wa‐
ter dynamics on corn yield. Third, a strategy is needed for
evaluating crop model simulations in each management zone
using datasets independent of those used for calibration. To
date, efforts to use crop models for precision agriculture ap‐
plications in Iowa have been performed using only the cal‐
ibration strategy developed by Garrison et al. (1999) and Paz
et al. (1999). No strategies for model evaluation using inde‐
pendent datasets have yet been investigated. A fourth chal‐
lenge involves the feasibility and impracticality of using a
crop model for precision agriculture when the user is required
to manually calibrate, evaluate, and apply the model inde‐
pendently within each management zone. Depending on the
strategy for delineation of management zone boundaries, a
single field may contain hundreds or thousands of zones that,
under the design constraints of our approach, would each re‐
quire independent model simulations. In a practical sense,
this limitation would greatly reduce the ability to generate
timely prescriptions for precision management of crop pro‐
duction inputs. Thus, a decision support system (DSS) has
been designed to automate the processes of management
zone delineation, model calibration, model evaluation, and
application of the model to answer questions in the area of
precision agriculture (Batchelor et al., 2004; DeJonge et al.,
2007b). The DSS incorporates geographic information sys‐
tem (GIS) tools for management zone delineation, algo‐
rithms to develop model input files for spatial simulations
(Thorp et al., 2005), an optimization routine for implement‐
ing a model calibration strategy, and algorithms for evaluat‐
ing and applying the model across management zones.

To continue the development of crop growth modeling for
applications in precision agriculture, the overall objective of
this study was to investigate strategies for evaluating crop
model simulations within the framework of our DSS. A com‐
mon strategy for evaluating agricultural systems models in
other research has been to partition the measured dataset into
two groups: one group for model fitting during the calibration
phase, and the other for model testing during the evaluation

phase (Garrison et al., 1999; Zhao et al., 2000; Bakhsh et al.,
2001). In these more classical studies, modelers typically ad‐
just several parameters manually, and an important aspect of
model evaluation is the modeler's subjective comparison of
measured and simulated data. In addition, in these kinds of
studies, models have usually been applied to plot‐level sites,
and researchers have rigorously controlled and measured
various aspects of the agricultural system to allow for a thor‐
ough evaluation of all model components. Our application of
crop growth models is different from this approach in several
ways. First, we intend to apply the model in production fields
where measured data for describing many aspects of the agri‐
cultural system, especially the soil system, will be limited or
nonexistent, and our simulations will therefore be subject to
several uncertainties. Second, to compensate for these uncer‐
tainties, we have developed a model calibration strategy that
implements an optimization routine to automatically adjust
several soil hydrologic parameters by minimizing error be‐
tween measured and simulated crop yield over multiple
growing seasons (Paz et al., 1999). Thus, beyond baseline ad‐
justment of the model for Iowa conditions (Garrison et al.,
1999), we do not rely on any other manual adjustment of
model parameters based on subjective comparisons of mea‐
sured and simulated data at a field site. Third, because we are
optimizing the model based only on historical measurements
of crop yield, we assume that the model will be better cali‐
brated for a study site if we include as many seasons of yield
information as possible in the optimization. Furthermore, we
assume that, when only a few seasons of yield information are
available,  leaving one or two seasons out of the optimization
may have significant effects on the final optimization result.
On the other hand, if we use all the yield measurements in the
optimization,  then there exists no independent dataset for an
unbiased model evaluation. Because of the above issues, our
modeling application requires an approach that is different
from the “two‐group partition method” typically used for
evaluating agricultural systems models.

Leave‐one‐out (LOO) cross‐validation (Efron and Gong,
1983; Efron and Tibshirani, 1998) is a statistical procedure
that is suitable for evaluating model simulations in the con‐
text of our applications in precision agriculture. Since collec‐
tion of measured yield data is limited by the frequency with
which a crop of interest is grown at a site, the number of sea‐
sons of measured data available for use in our model calibra‐
tion procedure has typically been small. LOO cross‐
validation is especially useful in cases where measurements
are limited, because it permits all available measured data to
be iterative and exhaustively used for both model calibration
and model validation. In addition, the resulting estimate of
model predictive performance is more reliable than estimates
from the “two‐group partition method” and less biased than
estimates derived from calibration‐dependent datasets (Jones
and Carberry, 1994). One drawback of using this technique
to evaluate crop growth models is that it complicates the
selection of model parameters to be used for post‐evaluation
applications.  LOO cross‐validation has been previously used
for evaluation of crop growth models in the work of Jones and
Carberry (1994) and Irmak et al. (2000). The main objective
of this study was to develop a procedure that implements
LOO cross‐validation to evaluate model simulations within
the context of our DSS for precision agriculture. Specifically,
the evaluation procedure was developed to assess how model
predictive performance responds to the use of additional
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yield measurements for model calibration, to compare model
simulations spatially across management zones, and to un‐
derstand the reliability of the optimum parameter sets gener‐
ated by the model calibration procedure. Thus, the evaluation
procedure can be used to characterize how many growing
seasons of measured data are “enough” for an adequate mod‐
el calibration, to identify causes of spatial variability in mod‐
el performance across a study site, and to make inferences
about what optimum parameter sets should be used for future
applications of the model. A secondary objective was to dem‐
onstrate the model evaluation procedure using CERES‐
Maize within the DSS to simulate five seasons of corn
production at a study site in central Iowa.

MATERIALS AND METHODS
SIMULATION ENVIRONMENT

Researchers at Iowa State University have recently devel‐
oped a DSS to facilitate the use of the DSSAT crop growth
models for applications in precision agriculture (Batchelor et
al., 2004; DeJonge et al., 2007b). One feature of the DSS is
a set of GIS tools that can be used to establish management
zone boundaries, extract information from soil surveys and
yield monitor data, and format crop model input files for spa‐
tial simulations (Thorp et al., 2005). These GIS tasks are used
to establish a simulation environment in which the one‐
dimensional DSSAT crop growth models are applied inde‐
pendently in each management zone, and the simulation
output for each zone is used to develop prescriptions for site‐
specific management. After preparing the simulation envi‐
ronment for a field site of interest, an optimization routine
within the DSS is used to calibrate the model. The optimiza‐
tion routine is based on the simulated annealing algorithm as
described by Corana et al. (1987) and implemented by Goffe
et al. (1994). Model parameters are adjusted in order to mini‐
mize the root mean square error (RMSE) between measured
and simulated yield within each management zone over mul‐
tiple growing seasons. Using the DSS, up to ten model param‐
eters can be uniquely optimized for several hundred
management  zones at one time. After model calibration is
complete,  the DSS stores the optimized parameter values for
each management zone in a database, where they can be re‐
trieved when needed for model evaluation and application to
questions in precision agriculture. Algorithms are available
in the DSS for generating site‐specific recommendations for
nitrogen fertilizer (Paz et al., 1999; Thorp et al., 2006) and
irrigation (DeJonge et al., 2007a) in corn and for plant popu‐
lation and variety selection in soybean (Paz et al., 2001a; Paz
et al., 2003). Given the large amount of simulations necessary
to apply crop growth models in precision agriculture, issues
of practicality would have prevented these studies from oc‐
curring without the existence of this DSS.

Development of the DSS is on‐going, and there are currently
some noteworthy limitations in our applications of crop growth
models in precision agriculture. First, the DSS is not currently
able to alternate between different crop models, so the effects
of crop rotations cannot be simulated. Second, the DSS does not
currently simulate continuously over multiple growing seasons,
so the model is reinitialized at the beginning of each year. Al‐
though this limitation does not allow the model state variables
to be tracked over multiple years, independent simulation of
growing seasons was a design constraint for development of the

model optimization routine. It also facilitates the resampling of
growing seasons for model calibration, as required to carry out
LOO cross‐validation. Third, since the DSS was intended to be
used for studying precision management in a production setting,
it has been designed with the understanding that detailed mea‐
surements of the agricultural system would be unavailable. We
assumed that yield monitor data would be the only information
measured locally at a study site, and even that has typically been
limited to just a few growing seasons. Soil characteristics would
be derived from a county survey. Weather data would be either
measured locally or obtained from the nearest National Climatic
Data Center (NCDC) site, and management information would
be provided by the producer. Since measured data for making
a detailed calibration of all model components are unavailable,
we use our known quantity, yield, to automatically optimize a
few select model parameters and artificially compensate for the
remaining uncertainties in the model.

CROP GROWTH MODEL
Data used in this investigation came from a production

cornfield in Iowa; thus, the CERES‐Maize crop growth mod‐
el (Jones and Kiniry, 1986) was implemented within the DSS
for this study. CERES‐Maize is a computer program that uti‐
lizes carbon, nitrogen, and water balance principles to simu‐
late the processes that occur during the growth and
development of corn plants within an agricultural system.
The model calculates growth and development of corn plants
within a homogeneous area on a daily time step, and the final
crop yield is computed on the date of harvest. Inputs required
for model execution include management practices (plant ge‐
netic coefficients, plant population, row spacing, planting
and harvest dates, and fertilizer application amounts and
dates), environmental factors (soil type, drained upper limit,
lower limit, and saturated hydraulic conductivity), and
weather conditions (daily minimum and maximum tempera‐
ture, solar radiation, and precipitation). Garrison et al. (1999)
calibrated CERES‐Maize for conditions in Iowa and modi‐
fied the model for simulating tile drainage in the water and
nitrogen balances. This modification was necessary for simu‐
lating corn growth on the tile‐drained soils of the Midwestern
U.S., and it enabled the development of our strategy for opti‐
mizing model parameters across management zones. In addi‐
tion, similar to the CROPGRO‐Soybean model (Calmon et
al., 1999a), the version of CERES‐Maize used within the
DSS was modified in‐house for simulating the effect of satu‐
rated soil water conditions on root growth distribution in the
soil profile, which is important for simulating crop growth on
soils that sometimes exhibit perched water tables. CERES‐
Maize has been widely used to simulate the collective effect
of plant genetics, management practices, weather, and soil
conditions on the growth, development, and yield of corn
plants, and the model has been shown to perform adequately
on plot‐level, field‐level, and regional scales for a wide vari‐
ety of corn hybrids, climatic conditions, and soil types around
the world (Hodges et al., 1987; Carberry et al., 1989; Liu et
al., 1989; Jagtap et al., 1993; Pang et al., 1998; Garrison et
al., 1999; Paz et al., 1999; Fraisse et al., 2001a).

MODEL CALIBRATION STRATEGY

The model calibration strategy used within the precision
agriculture DSS has been developed and tested for both corn
(Garrison et al., 1999; Paz et al., 1999) and soybeans (Paz et al.,
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1998) in Iowa. The strategy is based on the hypothesis that wet
spring weather leads to high soil moisture contents in the soils
of Iowa. High soil moisture leads to higher water tables in some
areas of the field, which restricts maximum crop rooting depth.
In addition, upward redistribution of water may cause oxygen
depletion in soil layers with existing roots, which leads to root
senescence. Later in the summer, the water table recedes as pre‐
cipitation diminishes. Crops in areas of the field where maxi‐
mum rooting depth was limited now have difficulty finding
water and thus exhibit water stress during the critical grain fill‐
ing period. Variable water stress across the field then leads to
spatial yield variability. The common Midwestern practice of
tile drainage further complicates the water table dynamics in
production fields. Tile drains have been installed throughout the
agricultural sector in the Midwestern U.S. for 150 years (Urban,
2005), but only recently have the locations of newly installed
tile drains been mapped and recorded (Allred et al., 2004). Thus,
the existence, location, functionality level, and hydrologic im‐
pact of tile drains in many production fields in Iowa is largely
unknown, which increases the difficulty of simulating this pro‐
cess.

Given these assumptions about the hydrology of agricultural
fields in Iowa, a procedure has been developed for optimizing
two model parameters, including the KSAT of the bottom soil
layer (190 to 210 cm in depth) and the effective tile drainage
rate, to calibrate models for simulating hydrologic effects on
crop yield in production fields (Paz et al., 1998; Paz et al., 1999).
These parameters govern the movement of water through the
soil profile and can be used to estimate the effect of imperme‐
able soil layers and tile drainage on water table, soil water, and
nitrogen dynamics (Garrison et al., 1999). Model calibration
gives small values for the deep‐layer KSAT parameter (cm
day-1) when a soil exhibits poor drainage. This causes water to
move more slowly through the bottom soil layer, and a water
table may form and restrict root growth as it moves upward in
the soil profile. If the soils within a grid cell are well‐drained,
then model calibration will result in a large value for the deep‐
layer KSAT parameter. In this case, excess water is more quickly
lost out the bottom of the profile and water tables are kept low
or never form, allowing roots to grow deep in the soil profile.
The effective tile drainage rate (day-1) is simulated as the frac‐
tion of water per day that leaves the soil layer at the specified
tile depth when a water table exists above the tile drain. Adjust‐
ment of this parameter allows for simulation of appropriate wa‐
ter contents in the root zone soil layers above the tile drain and
attempts to account for the largely unknown component of tile
drainage in the hydrologic balance.

With limited measured data to describe the agricultural
system and limited time for manual calibration of the model
across management zones, simulated annealing optimization
has been implemented within the precision agriculture DSS
to automatically carry out the calibration procedure. During
optimization,  the two model parameters are adjusted inde‐
pendently for each management zone to minimize the RMSE
between measured and simulated crop yield over multiple
growing seasons. For our crop modeling applications, RMSE
serves as the objective function to be minimized during simu‐
lated annealing optimization and can be defined as:
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where Ymi,j is the measured yield and Ysi,j is the simulated
yield in the ith management zone for the jth of the n seasons
of measured yield data used to calibrate the model.

Other researchers have used similar strategies to calibrate
crop growth models. For example, Liu et al. (1989) adjusted
phenological coefficients for maize until the simulated dates
for silking and maturity closely matched observed dates.
Jones and Carberry (1994) adjusted potential kernel number
and potential kernel growth rate to minimize error between
measured and simulated corn yield. A strategy similar to ours
has also been employed to calibrate crop models for agricul‐
tural systems having highly restrictive claypan soil layers
(Fraisse et al., 2001a). Other researchers have also imple‐
mented optimization algorithms that calibrate crop models
by solving for a parameter set that maximizes or minimizes
an objective function (Jones and Carberry, 1994; Calmon et
al., 1999b; Irmak et al., 2001). Typically, the RMSE, or re‐
lated error statistics, is the objective function to be minimized
during the optimization (Kobayashi and Salam, 2000; Gauch
et al., 2003).

MODEL EVALUATION STRATEGY
Because the number of growing seasons of measured yield

information available for use in the model calibration proce‐
dure has typically been small, efforts to evaluate the model
with calibration‐independent data have to date been ne‐
glected. To address this issue, a model evaluation strategy
based on the LOO cross‐validation statistical technique
(Efron and Gong, 1983; Efron and Tibshirani, 1998) was de‐
veloped to assess model performance within the context of
our DSS for precision agriculture. Three important issues
need to be addressed by the evaluation. First, since multiple
growing seasons of measured yield information are required
to calibrate the model, it is necessary to evaluate how the
model performance changes as additional growing seasons of
yield information become available for inclusion in the opti‐
mization. Second, since the DSS was designed to apply the
model spatially across management zones, it is interesting to
evaluate how model performance changes between zones
and to identify what is causing the model to perform better in
some zones as compared to others. Third, since the overall
goal of model calibration and validation is to determine what
parameters should be used for future applications of the mod‐
el, it is necessary to understand the reliability of the opti‐
mized parameter sets generated during model calibration. To
address these issues, measured data from a study site in cen‐
tral Iowa was used to develop and test a model evaluation
strategy based on LOO cross‐validation.

Cross‐Validation
Given a set of measured yield data from n growing sea‐

sons, LOO cross‐validation requires the crop model to be cal‐
ibrated and independently validated n times. For the jth of n
growing seasons, the model calibration procedure using sim‐
ulated annealing optimization is performed using data from
the n - 1 other growing seasons, leaving out the data from the
jth growing season. After optimizing the model with the jth
growing season left out, the calibrated model is used to simu‐
late the jth growing season. This process is repeated until data
from all n growing seasons has been left out and used for
model validation one time. The LOO cross‐validation esti‐
mate of model predictive performance is then calculated as
the root mean square error of prediction (RMSEP) between
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measured and simulated yield for the n independent model
validation simulations (fig. 1). In the context of this study,
RMSEP can be defined as:
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where Ymi,j is the measured yield value for the ith manage‐
ment zone in the jth of the n growing seasons used in LOO
cross‐validation,  and Ysi,-j is the simulated yield value in the
ith management zone obtained using the optimum parame‐
ters from a calibration with the jth growing season left out.
By repeating the LOO cross‐validation procedure in each
management  zone, a map of model performance can be gen‐
erated for the study area.

Evaluation Procedure
Assuming management practices remain constant from

year to year, climate variability, especially precipitation dif‐
ferences, are known to drive temporal yield variability in
corn and soybeans (Jaynes and Colvin, 1997). Since our mod‐
el calibration procedure utilizes temporal yield measure‐
ments over multiple growing seasons to optimize soil
hydrologic parameters within management zones, we hy‐
pothesize that the ability of the calibrated model to simulated
independent growing seasons will depend on the degree to
which the climatic conditions for growing seasons used in the
calibration are representative of the possible range of condi‐
tions at the site. Furthermore, since each growing season of
measured yield data provides a unique example of crop re‐
sponse to climate, model performance should generally im‐
prove as the number of growing seasons available for
calibration increases. To investigate this issue, a simple strat‐
egy was designed that utilizes LOO cross‐validation to ana‐
lyze all possible subsets of measured data from available
growing seasons. The strategy implements LOO cross‐
validation within a framework of combinatorial statistics.
According to statistical theory, the number of combinations
of n distinct objects taken r at a time, or “n choose r,” is:
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for r = 0, 1, 2, ..., n. Applying this theory to our modeling ap‐
plication, n represents the total number of available growing

Figure 1. Example of leave‐one‐out cross‐validation as applied with three
growing seasons of measured data. Optimization of the model three sepa‐
rate times leaving out one season each time gives three optimum parame‐
ter sets (OPS), which are used to validate the model three times using the
growing season left out.

seasons of measured data, and r represents the number of
growing seasons with which the model will be tested using
LOO cross‐validation. To evaluate how the model performs
when only two growing seasons of data are available, LOO
cross‐validation is first applied for all possible combinations
of measured data from two growing seasons, that is, “n
choose 2” times. This gives “n choose 2” unique values for
RMSEP, each of which represents the estimate of model per‐
formance when only one growing season is available for
model calibration and one for model validation. The same
analysis can then be carried out for all possible combinations
of three growing seasons, that is, “n choose 3” times. Since
three growing seasons are used now, each LOO cross‐
validation procedure follows the example shown in figure 1.
This results in “n choose 3” unique values for RMSEP, each
of which represents the LOO cross‐validation estimate of
model performance when two growing seasons are used for
calibration and one for model validation. This process can
then be repeated, incrementing r by one each time, up to n.
At that point, “n choose n” is one, the LOO cross‐validation
procedure can only be applied one time, and only one esti‐
mate of RMSEP can be generated (table 1). This procedure
allows for an examination of how model performance
changes as additional growing seasons of measured yield
data become available for model optimization. In particular,
it examines how the soil parameters generated by the calibra‐
tion procedure affect the simulation of calibration‐
independent growing seasons as additional growing seasons
are used to calibrate the model.

Applying the LOO cross‐validation procedure spatially
allows for an analysis of model performance across manage‐
ment zones. We hypothesize that spatial variability in model
performance will result from two main limitations in our at‐
tempt to optimize parameters to simulate water dynamics in
the soil system. First, values for the parameters governing
soil water retention and conductivity are obtained from soil
survey information and research literature rather than being
measured directly. Thus, the model may have greater diffi‐
culty simulating yield on the soil types where the soil survey
or literature values do not approximate actual soil properties
very well. Second, because of the model's one‐dimensional
nature, it may have greater difficulty simulating spatial yield
variation that is due to field topography. For example, al‐
though spatial redistribution of water according to topogra‐
phy has been linked to spatial yield variability (Marques da
Silva and Alexandre, 2005), the hydrologic balance of our
model does not simulate any surface or subsurface run‐on or

Table 1. Possible combinations of growing seasons when five seasons
of measured yield data are available. Leave‐one‐out cross‐

validation is applied separately to each combination.[a]

2 Years 3 Years 4 Years 5 Years

1 GS 1 & 2 GS 1, 2, & 3 GS 1, 2, 3, & 4 GS 1, 2, 3, 4, & 5
2 GS 1 & 3 GS 1, 2, & 4 GS 1, 2, 3, & 5
3 GS 1 & 4 GS 1, 2, & 5 GS 1, 2, 4, & 5
4 GS 1 & 5 GS 1, 3, & 4 GS 1, 3, 4, & 5
5 GS 2 & 3 GS 1, 3, & 5 GS 2, 3, 4, & 5
6 GS 2 & 4 GS 1, 4, & 5
7 GS 2 & 5 GS 2, 3, & 4
8 GS 3 & 4 GS 2, 3, & 5
9 GS 3 & 5 GS 2, 4, & 5

10 GS 4 & 5 GS 3, 4, & 5
[a] GS = growing seasons.
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run‐off between neighboring management zones. In addition,
since weather conditions are assumed to be uniform across
the field, the model does not simulate any spatial yield vari‐
ability that may arise from hillshade effects on incoming so‐
lar radiation (Bennie et al., 2006). If model error is mainly
due to issues with simulating the soil system, then an ap‐
propriate strategy for assessing model performance spatially
would be to divide the field into management zones based on
either soil type or topography and to implement the model
evaluation procedure within each zone. The resulting spatial
patterns of RMSEP would be useful for identifying the loca‐
tions where the model has the greatest difficulty simulating
yield and for determining whether the locations relate spa‐
tially to soil type and/or topography.

Since LOO cross‐validation is applied to all possible com‐
binations of measured growing seasons, several unique sets
of optimized parameters are generated during the calibration
phase of the model evaluation procedure. As the number of
growing seasons used for model calibration increases, the be‐
havior of the resulting parameter values can provide further
insight into model performance and the reliability of the cal‐
ibration. In this study, optimized parameter sets in each man‐
agement zone were grouped according to the number of
growing seasons used in the calibration. The mean and vari‐
ance of the parameter sets were then used to study how the
parameters behaved as additional seasons of measured infor‐
mation were used to calibrate the model. We expected the
mean parameter values to stabilize as the number of growing
seasons increased, and we expected the variance between pa‐
rameter sets to grow smaller. This result would indicate that
the additional growing seasons were helping the optimizer to
consistently converge on parameter sets having roughly the
same value, and the calibration procedure would therefore be
more reliable in that management zone. Since optimized pa‐
rameters in this study existed as a set of two, multivariate sta‐
tistical techniques were used to describe the parameter
variation by computing bivariate confidence ellipses around
the sample means for parameter sets in each management
zone (Johnson and Wichern, 2002). The confidence region
around the sample mean of the two‐dimensional parameter
set, as applied to the ith management zone in this two‐
parameter study, is the ellipse determined by all (�1, �2) such
that:
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where p is the number of parameters, n is the sample size of
parameter sets, ( )2,1, , ii xx  is the set of sample means for the

two parameters, Fp,n-p(�) is the value of the F‐distribution at
� on p and n - p degrees of freedom, and Si

-1 is the inverse
of the 2 × 2 covariance matrix for the parameter estimates in
the ith management zone. Given n sets of parameters, Si is
defined as:
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where (xi,j,1, xi,j,2) is the jth set of two parameter estimates in
the ith management zone. As a measure of the variation
between the bivariate parameter sets, the generalized
variance was computed, which is simply the determinant of
the covariance matrix Si. All confidence ellipses in this study
were computed using an � level of 0.05.

Application
Measured data for testing the model evaluation strategy

were available within a 20.25 ha study area of a production
cornfield near Perry, Iowa (41.93080° N, 94.07254° W). To
apply the strategy within the context of our DSS for precision
agriculture,  the GIS component of the DSS was first used to
develop management zones for the study area. Two separate
management  zone maps were created, one based on soil type
and the other based on topography. Management zones based
on soil type were developed from a digitized soil survey of
the study site. Five primary soil types, Canisteo silty clay
loam, Clarion loam, Nicollet loam, Harps loam, and Okoboji
silty clay loam, were present across the study area, and
20�unique management zones were established based on
these soil types (fig. 2a). In each zone, the soil profile was
simulated in 15 layers to a depth of 210 cm, and estimates of
the physical properties for each soil type in each layer were
obtained from two sources. The saturated hydraulic
conductivity (KSAT, cm day-1), bulk density (BD, g cm-3),
soil pH, and soil texture in each soil layer were obtained from
the county soil survey (USDA‐SCS, 1981), and Ratliff et al.
(1983) provided estimates for drained upper limit (DUL, cm3

cm-3) and lower limit (cm3 cm-3) based on soil texture.
Saturated moisture content (SAT, cm3 cm-3) was calculated
from BD using:

 ⎟
⎠
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1*92.0SAT  (6)

Management zones based on topography were developed
from an interpolated contour of elevation data collected with
a real‐time kinetic (RTK) global positioning system (GPS)
receiver at the site. Elevation ranged from 299 m to 306 m
above sea level, with a maximum slope of approximately 2%.
A 1 m contour of elevation data resulted in 14 unique
management  zones based on topography (fig. 2b). The DSS
GIS component was used to determine which soil type
covered the largest area of each topographic management
zone, and soil properties were assigned to each zone based on
its dominant soil type.

Since soil properties were not measured at the site,
appropriate initial conditions for soil water content and
nutrient levels were assumed and assigned uniformly to each
management  zone. Initial soil water content was set to
0.3�cm3 cm-3, a value just below the DUL for the soils in the
field. Initial nutrient levels were set arbitrarily to 0.1 g
elemental  N, P, and K per Mg soil. For the purpose of this
study, it was assumed that the soil profile contained only a
negligible amount of nutrients at the beginning of the season,
and that spring‐applied fertilizer applications served to raise
the nutrient concentrations to levels that would support plant
growth. Since growing seasons are simulated independently
within the DSS, these initial conditions were used to start the
simulation of every growing season. Plant population was
assigned uniformly to each management zone based on the
average of population measurements that were collected in
the 1996 growing season, and default cultivar coefficients for
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Figure 2. Management zones were established based on (a) soil type from a county soil survey and (b) topography from measured elevation data (m).
For model simulations, dominant soil types were assigned to topographic management zones based on the type that covered the largest area in the zone.

a 2650 to 2700 growing degree day corn variety were used.
Model inputs for management practices, including planting
date, harvest date, and fertilizer application rates and dates,
were set according to the producer's actual production
practices. Weather data, including solar radiation, maximum
and minimum daily temperature, and precipitation amount,
were collected daily from a weather station directly at the
site.

Five growing seasons of corn yield information were
available at the study site. Corn yield was measured using a
yield monitor on a grain combine at the conclusion of the
1994, 1996, 1998, 2000, and 2002 growing seasons. The GIS
component of the DSS was used to clip the measured yield
information for each year according to management zone, to
compute the average yield in each zone, and to prepare the
yield input files necessary for spatial simulations using
CERES‐Maize within the DSS. Given that five growing
seasons of measured information were available, the
proposed model evaluation strategy was carried out by
applying LOO cross‐validation for all the combinations of
five growing seasons, as shown in table 1. An extra
calibration procedure was also carried out to determine the
optimum parameter sets when all five seasons were used to
calibrate the model, meaning none were left for validation.
Based on the number of ways to combine the measured
growing seasons (eq. 3), model calibration procedures
required for LOO cross‐validation resulted in five, ten, ten,
five, and one optimum parameter set(s) for combinations of
one, two, three, four, and five growing seasons, respectively.
The LOO cross‐validation procedures resulted in five, ten,
ten, and five RMSEP estimates of model performance for
combinations of two, three, four, and five growing seasons,
respectively. Optimum parameters sets and RMSEP values
for each combination were obtained across all

20�management  zones based on soil type and all
14�management  zones based on topography.

RESULTS AND DISCUSSION
MODEL PERFORMANCE WITH ADDITIONAL SEASONS

As the number of growing seasons of measured data used
for LOO cross‐validation increased from two to five, the
average RMSEP for the various growing season
combinations generally tended to decrease. Management
zones based on topography showed the greatest range in
average RMSEP, with a value of 1460 kg ha-1 when only two
growing seasons were used for LOO cross‐validations and
998 kg ha-1 when five growing seasons were used (table 2).
For management zones based on soil type and topography,
the coefficients of determination (r2) between number of
growing seasons used for cross‐validations and average
RMSEP were 0.86 and 0.73, respectively. Average RMSEP
trends were linearly decreasing as the number of growing
seasons available for LOO cross‐validations increased
(fig.�3). These results demonstrate that as more growing
seasons of measured data become available for use in a cross‐
validation procedure, the ability of the model to simulate
growing seasons independent of the calibration generally
improves. By the definition of LOO cross‐validation (fig. 1),
increasing the number of growing seasons available for the
procedure means that more growing seasons will be
simulated in the optimization procedures used to calibrate the
model. When the parameters from those optimizations are
then used to validate the model and the resulting RMSEP is
lower than that from using fewer growing seasons in the
procedure, it can be concluded that the model's ability to
simulate yield in independent growing seasons has improved.
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Table 2. Root mean square error of prediction (RMSEP) results for
cross‐validations based on two through five seasons of measured

data across soil type and topography management zones.[a]

Seasons

Soil Type Zones Topography Zones

Average
(kg ha-1)

SD
(kg ha-1)

Average
(kg ha-1)

SD
(kg ha-1)

Two 1378 1468 1460 1421
Three 1392 1293 1244 1011
Four 1271 958 1334 1120
Five 1171 630 998 539

[a] SD = standard deviation.

In addition to the average, the variation of RMSEP from
cross‐validations also tended to decrease as the number of
growing seasons included in the procedure increased from
two to five. For management zones based on soil type, the
standard deviation of RMSEP across zones was 1468 kg ha-1

when two growing seasons were used in LOO cross‐
validations,  and it was 630 kg ha-1 when five growing
seasons were used in the procedure (table 2), and a similar
trend was seen across management zones based on
topography. In addition to the standard deviation, the inter‐
quartile range and total range of RMSEP were visibly shown
to decrease as the number of growing seasons used in LOO
cross‐validation procedure increased (fig. 3). This
demonstrates that, as more growing seasons of measured
information become available for LOO cross‐validation and
more seasons are therefore used in the optimization routine,
the resulting calibrated model is able to simulate yield in
independent growing seasons within a narrower expected
range. When only two growing seasons of measured
information are available for LOO cross‐validation, and only
one season is therefore used to calibrate the model, the
optimization procedure may overfit the parameters to the
conditions of the calibration seasons. The calibrated model
may then simulate yield very poorly in the independent
seasons, as indicated by the upper‐bound RMSEP over
7000�kg ha-1 for the two growing season case (fig. 3).
However, when five growing seasons are used for LOO cross‐
validation,  the model is calibrated based on the conditions of
four growing seasons, and thus it is more reliably able to
simulate yield in independent seasons within a narrower
range of expected RMSEP values. An interesting result was
also that the lower‐bound RMSEP was slightly greater as
more growing seasons were used for LOO cross‐validation.
When only two seasons are used, chances are greater that two
seasons having similar weather patterns may be encountered,
and thus the calibrated model for one season is able to
simulate the other season with low error between measured
and simulated yield. However, as more seasons are used for
cross‐validation,  it is likely that weather patterns between
seasons will be more different. The increased lower limit for
RMSEP then arises due to the imperfections in the model as
it is used to simulate a wider range of conditions.

Reducing the average and standard deviation of RMSEP
as additional growing seasons were used in the cross‐
validation procedure was an expected result. However, the
results were only able to provide partially conclusive
evidence about how many growing seasons are “enough” for
an adequate model calibration. With the understanding that
the model is a simplified approximation of what actually
happens in the agricultural system, model simulations will
never be perfect. Thus, RMSEP cannot decrease indefinitely,
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Figure 3. Box plot of values for root mean square error of prediction
(RMSEP) as the number of seasons of measured data available for cross‐
validation increases. Data were aggregated across management zones by
(a) soil type and (b) topography.

and we might expect the average and standard deviation of
RMSEP values to stabilize as the number of growing seasons
used in the model evaluation procedure increases beyond
five. At that point, the number of growing seasons required
for an adequate calibration could be determined. Based on
the results from the data currently available, it can be
concluded that using LOO cross‐validation to calibrate and
validate the model based on five growing seasons results in
a better performing model than using two, three, or four
growing seasons. However, it is possible that using more than
five seasons of measured information could provide a model
that continues the trend of decreasing RMSEP and better
performance in simulating calibration‐independent datasets.

MODEL PERFORMANCE SPATIAL VARIABILITY

Since the LOO cross‐validation procedures were
performed independently for each management zone, maps
of RMSEP show how the model performance varied spatially
depending on soil type (fig. 4a) and topography (fig. 4b).
Since zones of higher and lower RMSEP tend to cluster
together, there is evidence that spatial patterns in model
performance exist across the field. Since RMSEP in each
zone represents the ability of calibrated models to simulate
yield in multiple independent growing seasons (eq. 2), an
understanding of the spatiotemporal pattern of yield
variability at the site, as it relates to soil type and topography,
is necessary to provide insight into why the model
performance varied as it did across these management zones.

For the LOO cross‐validation procedure involving
measured datasets from all five growing seasons, the mean
RMSEP values for zones having the Nicollet, Okoboji, and
Clarion soil types were 1651, 1079, and 1059 kg ha-1,
respectively. Lower mean RMSEP values of 926 and 496 kg
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Figure 4. Spatial variability of RMSEP across management zones by 
(a) soil type and (b) topography for the cross‐validation procedure using
all five growing seasons.
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Figure 5. (a) Mean RMSEP from cross‐validation on five growing seasons
across soil types and (b) variability of measured yield, normalized by the
annual field‐level average yield, across growing seasons and soil types are
both greater on Nicollet, Okoboji, and Clarion soils than on Harps and
Canisteo soils.

Table 3. Measured corn yield according
to soil type and growing season.[a]

Soil
Type

Measured corn yield (kg ha-1)

1994 1996 1998 2000 2002 SD

Okoboji 11204 8820 9755 7571 10685 1458
Harps 10937 8941 9706 7716 10457 1275

Canisteo 10898 9051 9928 7541 10471 1331
Nicollet 10481 9114 9945 7554 10535 1241
Clarion 10802 9091 9928 7502 10330 1297

SD 261 122 113 82 129
[a] SD = standard deviation.

ha-1 were found for zones having the Harps and Canisteo soil
types (fig. 5). Thus, the calibrated model had more difficulty
simulating yield on the Nicollet, Okoboji, and Clarion soils
than on the Harps and Canisteo soils. An analysis of the

spatiotemporal  patterns of measured corn yield variability
across the study site helps improve the understanding of these
results. Averaging corn yield measurements across zones of
the same soil type for each of the five growing seasons
demonstrated that temporal yield variability across growing
seasons was more significant than spatial yield variability
across soil types in a single season. The standard deviation of
measured corn yield across growing seasons ranged from
1241 to 1458 kg ha-1 depending on soil type, and the standard
deviation of measured corn yield across soil types ranged
from 82 to 261 kg ha-1 depending on the growing season
(table 3). Thus, to be able to appropriately compare temporal
yield variability spatially between zones, the effect of year-
to‐year variability first needed to be removed. To do this, corn
yield measurements for each soil type management zone in
each season were normalized by the field‐level average yield
for that season. The resulting normalized yield represents the
relative departure of zone‐level yield from the field‐level
average yield and allows yield to be better compared across
growing seasons and across management zones. Results
demonstrated that variability in normalized yield across
growing seasons and soil types was greater on Nicollet,
Okoboji, and Clarion soil types than on Harps and Canisteo
soils. Thus, the measured yield on Nicollet, Okoboji, and
Clarion soils tended to deviate more from the field‐level
average yield than that on Harps and Canisteo soils. This
suggested a direct relationship between the variation of
normalized yield across growing seasons and mean RMSEP
for each soil type (fig. 5). The soils types having measured
yield values that deviated more greatly from the field‐level
average were also the soil types on which RMSEP from cross‐
validation indicated that the calibrated model was having
greater difficulty simulating yield in independent growing
seasons.

These results make more sense when considering the
topologic placement of these soil types on the Iowa
landscape. According to the county soil survey (USDA‐SCS,
1981), Clarion loam is a well‐drained soil found on the
convex hilltops and knolls of uplands. Nicollet loam is
similar to Clarion; however, it is found on lower knolls and
exhibits well‐drained to somewhat poor drainage patterns.
Okoboji silty clay loam is a very poorly drained soil and is
located at the bottom of concave upland depressions. Harps
loam soils are poorly drained and exist on the rims of the
upland depressions surrounding the Okoboji soils and on the
low ridges between depressions. Canisteo silty clay loam
soils are poorly drained and lie on the low flats between
upland hilltops and depressions. Thus, for the soil types
present at our study site, there is a generally increasing
topologic trend moving from Okoboji to Harps to Canisteo to
Nicollet to Clarion soil types. The southern portion of the
study area provides a perfect example of this relationship
between soil type and topography for these soils (fig. 2).
Existing in the west central portion of the study area is an area
of Okoboji silty clay loam at an elevation just less than
300�m. Harps loam surrounds this topologic depression at a
slightly higher elevation. Toward the southeast, the elevation
increases to more than 305 m, and Clarion loam is found on
the hilltop. On the lower knolls between Clarion loam is
found Nicollet loam, and Canisteo is found winding between
the hilltop and the depression.

To better understand the effects of the soil system on
model performance, variability in measured yield was
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Figure 7. (a) RMSEP from cross‐validation on five growing seasons and
(b) variability of measured yield, normalized by annual field‐level
average yield, across growing seasons are both greater in the depression
and on the hilltop.

investigated along seven management zones associated with
the topographic rise at the southern portion of the study area.
The zones of interest are labeled A through G in figure 4b,
where zone A is at the lowest elevation in the topological
depression and zone G is at the highest elevation on the
hilltop. Plotting the measured corn yield for these zones in
each growing season demonstrated that yield trends existed
along the topography of this region. Furthermore, the
direction of the trend varied depending on the growing season
(fig. 6). In 1996 and 1998, yield was higher on the hilltop and
lower in the depression, with a decreasing yield trend down
the slope. In 1994, 2000, and 2002, yield was higher in the
depression and lower on the hilltop, with a decreasing yield
trend up the slope. When measured yield values for these
zones were normalized by the field‐level average yield for
the season, the results showed that measured yield across
growing seasons deviated most significantly from the field‐
level average yield for zones located at the topological

extremes. Zones A and B, located in the depression, and
zones F and G, located on the hilltop, all tended to exhibit
greater variation in normalized measured yield, while zones
lying on the sideslope between the topological extremes
tended to exhibit less variation (fig. 7). Finally, similar to the
zones based on soil type, the values for RMSEP in
topography‐based zones exhibit the same pattern as the
variation in normalized yield across these zones. RMSEP
tends to be greater in the zones at the topological extremes in
the depressions and on the hilltops (figs. 4b and 7).

Clearly, these results show that there is a topographic
effect on spatial yield variability and that the effect manifests
itself in opposite ways depending on the growing season
(fig.�6). In some years, yield on the Okoboji and Harps soils
in the topological depressions are higher than yield on the
Nicollet and Clarion soil types on the hilltops. In other years,
the opposite is true. Across growing seasons, the corn yield
measurements on the Okoboji and Harps depressions and on
the Nicollet and Clarion hilltops tend to deviate more
significantly from the field‐level average than yield found
between the topological extremes (figs. 5 and 7). From this,
we can conclude that topography has the greatest impact on
yield at the extreme topographic locations. It is not exactly
clear how or why topography affects measured yield in this
way, but the data clearly indicate that an effect is there. The
significance of this result is that the spatial patterns of model
performance exhibited a similar trend. RMSEP values from
LOO cross‐validation using all five years of measured data
indicated that the calibrated model simulated yield more
poorly on both the Okoboji and Harps soils in the depressions
and on the Nicollet and Clarion soils on the hilltops (figs. 4,
5, and 7). The calibrated model was always best able to
simulate yield on the sideslopes between the topological
extremes, typically having the Canisteo soil type. Since the
model does not simulate any processes by which topography
might affect yield, such as the lateral redistribution of water
down the sideslope or hillshade effects on incoming solar
radiation, we conclude that these limitations of the model
contribute to the higher simulation error at the locations were
topography affects yield the most.
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PARAMETER BEHAVIOR
Optimized parameter sets for effective tile drainage rate

and KSAT of the bottom layer from zones E and F (fig. 4b)
demonstrate how the mean and variance of parameters sets
obtained from the model calibration procedures can be used
to further evaluate the model performance and the reliability
of parameters in each management zone. Drawing 95%
confidence ellipses around the parameter means
demonstrated that the optimizer tended to provide a more
stable solution for zone E (fig. 8a) than for zone F (fig. 8b).
For zone E, the generalized variance, computed from the
covariance matrix for parameter sets from calibrations using
one, two, three, and four growing seasons, was 2.9E‐4,
4.9E‐5, 2.3E‐5, and 9.3E‐6, respectively. Although the
generalized variance is a unitless quantity, the magnitudes of
the parameter set variances demonstrated a decreasing trend
as the number of growing seasons used to calibrate the model
increased. Therefore, with increased availability of yield
measurements,  the optimizer tended to converge on
parameter values that were more similar. The 95%
confidence ellipses around the parameter means for zone E
tended to shrink in size as additional growing seasons were
used to calibrate the model (fig. 8a). Narrowing the
confidence limits means that we can be increasingly certain
about the parameter values that should be used in future
applications of the model. One exception is the ellipse for
parameter sets based on four seasons of measured data, which
is slightly larger than the ellipses for parameter sets based on
two and three seasons of data. Although the ellipse is larger,
the generalized variance for four‐year parameters sets was
less than that for three‐year and two‐year parameter sets.
Thus, it is expected that the larger confidence ellipse for four‐
year parameter sets is more dependent on a difference in
sample sizes; recombining the measured data for model
calibrations results in ten parameter sets for two‐year and
three‐year combinations but only five for four‐year
combinations.  In addition to the size of the confidence
ellipses, the relative position of the mean values gives
another indication of the optimizer's ability to generate
stable solutions for parameters in a management zone. For
zone E, the parameter mean values are held relatively tightly
together, and each point falls within the area of intersection
for all confidence ellipses (fig. 8a). Even the parameter set
generated by the model calibration using all five years of
measured data falls within the expected confidence limits
determined from calibrations using fewer seasons. With
decreasing parameter variance and a stable mean value as
more growing seasons are added into the calibration, we
conclude that the optimizer is relatively stable and reliable in
zone E.

Different patterns of behavior are evident in the parameter
sets for zone F (fig. 8b). Confidence ellipses tended to shrink
in size, as expected. However, the generalized variance was
actually larger for parameter sets based on two years of data
than that for one year of data. Generalized variance for
parameter sets from calibrations based on one, two, three, and
four seasons of measured data in zone F was 3.2E‐4, 9.9E‐4,
2.1E‐4, and 3.6E‐6, respectively. As the number of growing
seasons used to calibrate the model increased, the mean
values for the optimum parameters also underwent a
substantial shift, especially the effective tile drainage rate
parameter. Mean parameter values from calibrations based
on more growing seasons also tended to drift beyond the
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Figure 8. Parameter means and 95% confidence ellipses for optimum
parameter sets from model calibrations using combinations of one, two,
three, four, and five growing seasons for (a) zone E and (b) zone F.

confidence limits for parameter means based on fewer
growing seasons. The parameter set from the calibration
using all five growing seasons lies within the confidence
limits for parameters based on four seasons of data, but the
five‐year parameter set does not intersect any other
confidence regions. Thus, even with five years of measured
data, the optimizer was incapable of providing stable
parameter values as the number of growing seasons used in
the calibration increased. Therefore, we conclude that the
optimizer is less stable in zone F, and we have less confidence
in deciding which parameter values should be used for future
applications of the model. Additional seasons of measured
information would be required to determine a range of
parameter values around which the model begins to stabilize.
Interestingly, zone F is located on the hilltop (fig. 4b), where
the model had difficulty simulating yield due to topographic
effects on spatial yield variability (fig. 7). On the other hand,
zone E, which had the more stable optimizer solutions, lies
more on the sideslope between the hilltop and the depression,
an area were model performance was better.

CONCLUSIONS
Performance of crop growth simulations within the

precision agriculture DSS used for this study were dependent
on the number of growing seasons of measured yield



1478 TRANSACTIONS OF THE ASABE

information available for use in the model calibration
procedure. The ability of the model to simulate yield in
growing seasons independent of the calibration was shown to
improve as the number of growing seasons used for model
optimization increased. In this study, LOO cross‐validation
using five growing seasons of measured information
generally resulted in a better performing model than that for
two growing seasons; however, results suggested that there
may be opportunity for further improvement in model
performance as the number of available seasons of measured
data is increased beyond five. This appears to be one of the
most difficult limitations to overcome in using this approach
to apply crop growth models in precision agriculture; it takes
a long time to collect enough yield measurements to ensure
the stability and reliability of model optimization in each
management  zone. Furthermore, investigations into the
spatial nature of model performance suggested that some
management  zones would require more measured yield
information than others in order to arrive at a stable and
reliable set of optimized parameters. Characteristics of the
soil system, including soil type and topography, were shown
to be a probable cause of spatial variability in model
performance,  and spatial patterns in measured yield were
also shown to be related to these characteristics of the soil
system. Similarities in the spatial patterns of model
performance and measured yield support the idea that the
model is limited by its inability to account for any effects of
topography on crop yield. Exploration of remote sensing data
assimilation techniques for updating vegetative growth state
variables would be an appropriate way to address some of
these limitations in using crop growth models for
applications in precision agriculture. Remote sensing could
also be used to obtain better estimates of spatial variability in
soil properties and/or plant population across management
zones and to perhaps identify the location of tile drains. Use
of remote sensing in these ways could result in better LOO
cross‐validation model performance evaluations when only
a few measured growing seasons were available for model
calibration.
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